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ON THE ASYMPTOTIC THEORY OF SONIC FLOW OVER BODIES OF REVOLUTION * 

A. L. BREZHNEV and I. A. CHERNOV 

It is shown that the asymptotic theory of the distant field when applied to the 

problem of flow of perfect gas over a body of revolution, a flow that is sonic at 

infinity, can be supplemented by new terms containing arbitrary constants which 

carry information about the shape of the body. 

The main feature of the flow of gas over a wing profile, when the flow velocity at in- 

finity is sonic, is defined by the self-similar solution of transonic equations /1,2/. The 

axisymmetric analog of that solution was analyzed in /3/. Ryzhov and Shefter /4/ had noted 

that the difference between the plane and axisymmetric cases is that in the latter viscosity 

and thermal conductivity play an essential part. The allowance for their effect in the study 

of viscous gas flow over a finite body leads to the asymptotic theory of the distant field. 

A survey of achievements in this line of investigations appeared in /5/. 

The development of an asymptotic theory applicable to inviscid gas is, nevertheless of 

some interest. This was done in /6,7/ for the plane flow, using expansion in the hodograph 

plane. Respective constructions for the plane /8/ and three-dimensional /9/caseswereobtain- 

ed using expansions in self-similar components directly in the flow plane. Some details of 

such expansions were discussed in /lO,ll/. 

The asymptotic theory of the distant field uses the inverse expansion (intheterminology 

of /12/) whose characteristic feature is the appearance of indeterminate coefficients which 

are generally determined by the shape of the body. Their actual calculation is a difficult 

unsolved problem. Because of this the completeness of determination of the distant field in, 

for instance /8,9/, remained an open question: is the derived asymptotic solution valid for 

the flow over a body of arbitrary shape or only over bodies of a particular form? 
Profiles for which the distant field defined by the expansion in /8/ is inapplicable in 

the plane case were indicated in /13/. 

A similar construction derived below is valid in the case of axisymmetric flow. Since 

the question of inclusion of arbitrary constants in the asymptotic expansion is realted to 

some problem of proper solutions of the corresponding differential operator, the investigation 

is carried out on the basis of the transonic equation. Extension of the asymptotic theory of 

distant field /9,10/ is obtained at the cost of introduction the method of distorted co- 

ordinates /12/ and the inclusion in the expansion of logarithmic terms. The question of com- 

pleteness of such extension remains open. 

1. Let us consider the flow of perfect gas over a symmetric wing profile of infinite 

span or over a body of revolution at zero angle of attack. Let the velocity of the oncoming 

stream be sonic at infinity. We introduce a rectangular or cylindrical system of coordinates 

3' and y, with the x-axis lying on the flow axis of symmetry. The motion of gas is, then, 
defined by the approximate system of transonic equations /2/ 

--uu, t vy + (0 I y) v = 0, Ily - v, = 0 (1.1) 

where u and v are dimensionless velocity components of a uniform sonic stream, and o is a 

parameter which is zero or unity in a plane or axisymmetric flow, respectively. 

The distant flow field between the negative semiaxis z and the limit characteristic is 

investigated. At the boundaries of that region the flow must satisfy conditions 

u (XT Y), lJ (z, Y) (1.2 
which are analytic functions at the limit characteristic 

v (x, 0) = 0, x < 0 (1.3 
System (1.1) with conditions (1.2) and (1.3) will be called Problem 1. Let us consider 

the self-similar solution of that problem 

u = y-2 u, (Q, u z p-3 I/, (9, 5 = xyP (1.4) 

where 5 is the self-similar variable, with 5=-C% corresponding to the negative semiaxis 
X, and 5 = 5, to the limit characteristic (point 5, is determined by the condition 

U, (k) = n2([,2). For the plane flow exponent n=4/, /l/ and for an axisymmetric one n=4/; /3/. 
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Velocities U, and v, were determined in /1,14/ in terms of algebraic functions. 

The effect of the body in the stream is taken into account by representing the solution 
of Problem 1 in the form of expansions of the unknown functions u and v in self-similar com- 

ponents 

UL=Y *,'-2 IU, (5) + yW, (5) i- y"-u, (F) -I- . ..I ) v=y 3R--3 [V, (5) + YhlTil (5) + Y">li, (b) + . ..I (1.5) 

where Vi and vi (i = 1, 2, . ..) are the new unknown functions which satisfy ordinary linear 

differential equations and some boundary conditions at the ends 5 = _-oo and 5 = c,. From 

(1.2) for the condition at point 5, we obtain 

UI = R(5- GJ, vi = R (5- L,) 

Here and in what follows we denote functions that are analytic in the neighborhood &=O 

by the symbol R (E). 

If (1.5) is to determine the solution of Problem 1, exponents h, must have definite 

values. As in /lo/ we denote them by hi- 

w = 0, hi- = -2i / 5, 0 = 1, hi- = I/, [Zi + 1 - (24P + 24i +l)‘/zl 

In the asymptotic theory of distant field the boundary condition at the surface of the 

body is ignored, therefore a denumerable set of form parameters arises in expansions (1.5). 

These parameters are arbitrary constants which carry information on the form of the body but 

remain indeterminate for local study within s2fy2>1. Varying the form parameters enables 

us to obtain a wide class of solutions of Problem 1. However not any solution of that problem 

can be expanded in series (1.5)with hi =hj-. This conclusion is based on data in /13/,where 

a solution of Problem 1 somewhat different from (1.5) was obtained for the case of planeflow 

by the hodograph method. In the physical plane that solution is obtained by using the 

method of coordinate distortion /12/ in which not only the unknown functions u and v but, 

also, the independent variable 5 are expanded 

u = y- [u,,(z) + yh,, (z) + yhu,, (z) + . ..I ) v = Y3”+ boo (2) + YhW,, (z) + Y%,, (z) + . ..I 

5 = z + YQ, (z) + yh,5,, (z) + . . . 

(1.6) 

where z = --oo corresponds to the negative x-axis and z = z, to the limit characteristic 

(% (z,) = s"ze2). The principal terms in (1.6) coincide with those of the self-similar solu- 

tion (1.4) 
uoo (4 = ULl (4r uoo (4 = ‘v, (4 

The spectrum of exponents {hi} obtained in /13/ comprises {h,-} as a subset. This 

shows that the class of solutions (1.6) of Problem 1 is wider than (1.5), and that certain 

functions uiO and Vi0 nonanalytic at point z, are admissible. Since singularities of the 

admissible functions nill and viO are of a special form, condition (1.2) is satisfied. 

The aim of the present work is to obtain for axisymmetric flows a solution of Problem 1 

similar to (1.6). Since the hodograph method is ineffective when 0 = 1, the solution is 

constructed directly in the x,y plane using the method of distorted coordinates of the 

form 
U = Y2"-' ($10 + y'l'u,, + yhz(uplln y -1- uzO) -t yha [ual .(ln y)2 + uJI In y -t u3J + . ..} 

(1.7) 

v = Y3"-3 [%a I- y"% + yhJ (uI1 In y -t vzO) + . ..I. i == z -t yh'jlo -t y'< (c,, In y + Leo) + . . 

where functions Uij, v,], and <ij depend on Z. The exponents h, are selected so that the 

singularities of functions uij and vij are of the same special form as that of llio and Vi0 

in (1.6), as z-z,. For simplicity we restrict (1.7) to series in which hi form a de- 

creasing arithmetical progression 

ILi = iIll, I!,, < 0, i = 1, 2, . . . 

2. Let us, first, consider the plane flow 0=0 and n = 'Is. To obtain some prelimin- 

ary information for constructing solution (1.7) with 0 = 1 we present certain results from 

/13/ and their corollaries. 
In the hodograph plane system (1.1) becomes linear 

- uy, -1. 5" G= 0, YU - .r, = 0 (2.1) 

Let us consider the solution of system (2.1) as the sum of two self-similar terms 

y = v-'laY, (t) + v’l.Y, (t), z = ln”X, (t) + V’iXX, (t) ) t = v I (9 - 41% lq/. (2.2) 

Terms with subscript 0 represent the solution /l/ of the problem of flow over a pro- 

file of infinite span, those with subscript1 the solution /15/ that defines the second 

asymptotic type of flow in plane Lava1 nozzles. The value t = 0 corresponds to the negative 

semiaxis z and t = 00 to the limit characteristic. By inverting functions z,y Iu,V in 

(2.2) we obtain u,v Ix,y as the solution of Problem 1. This solution is of the form (1.6) 

with exponents hi = -lli/ 10. Functions UiOl Vie, and 5i0 can be expressed in terms of para- 

meter t 



On the asymptotic theory of sonic flow 323 

uio = UiOQ tt), viO = ViOI (t)7 5iO = 5iOw (t)7 Z = 2” (t) (2.3) 
where Uiow, . . . 7 zw are an algebraic combinationsof the known functions y,, y,, x,, and X, 

/13/. 
Let us determine the equations and boundary conditions which must be satisfied by uio 

and Vi0 in the interval --oo<z<z, if (1.6) is to represent the solution of Problem 1, 

and, also, the behavior of the distorting functions ciO at the ends of that interval. sub- 

stituting (1.6) into (1.1) we obtain a sequence of systems of linear differential equations 

- uoo"io - Uoo'Uio + (3n - 3 -t hi) vi,) - nZviO’ = Ki, (2.4) 
(2n - 2 + hi) Uio - nzUfO’ - uio’ = Lie, i = 1, 2, . . . 

where the prime denotes differentiation with respect to the argument, and the right-handsides 

Kio and Lie depend on u,~, liO. and t,o and their first derivatives. Boundary conditions 

for (2.4) are obtained with the use of the exact solution (2.3). Making t--t m we find that 

as z-z, 
uio = R (A), vi,, = R(A) (2.5) 

ii, = R (A), A = (z - z,)% (2.6) 

At the limit as t-t 0 we obtain that in the neighborhood s=--00 

ui,, = Z-2n+2-litR (Zz), vi,, = (2.7) 
5, 
*II 

_ z- - 'R(z) z= (_ ;:"*l-'R(zz) n** 2 7, 'n (2.8) 

Problem 1 for the unknown functions u and v is, thus, transformed into Problem 2 with 

UiO and V;O as the new unknown functions, and consisting of system (2.4) with conditions 

(2.5) and (2.7). The purpose of the distorting functions &, is to prevent an increase of 

singularities in uio and Via in the neighborhood of point z, with the increase of the ap- 

proximation number /12/. Functions &, must be selected with allowance forthe requirements 

of (2.6) and (2.8). 

3. Let us now consider axisymmetric flows with o -= 1 and n = 41,. We shall seek a 

solution of Problem 1 of the form (1.7), where for the representative velocitieswe shall form- 

ulate some Problem 3 similar to Problem 2. As shown by equalities (2.6) and (2.8) the distort- 

ing functions are of a fairly complex form. To simplify them and ensure the validity of 

respective expansions as Y - 0, we pass from variables z and y to the new independent vari- 

ables r and p which we introduce using the data in /9/. In these variables the boundary 

condition at the axis of symmetry is of simpler form. 
Representative UOO and voo are of the form 

IL 00 = 24.7-z (Gt - 5) TV’, vo3 = 3.26.7-3(-4t + 5) Y;?, z 2.~ 7-‘(12~ _ 5)t-‘/, 

The value r ~= 0 corresponds to the negative semiaxis I and t = 1 to the limit character- 

istic. We define the variable 0 by p = yt-‘1%. In new variables expansion (1.7) assumes the 

form 
u = p-"T UOOW + pk%o (4 + p”z [fzl (4 lnp + fzo WI + . ..I (3.1) 

v = P-';' (go0 (7) + ph'gl, (r) + ph. [g,, (z) In P + g,, WI + . ..I 

5 = ciy {Eoo(~ + ph%lo (4 + phz [Es1 (t) In P + E,, (t)l+ . ..} 

where the principal terms are determined by the equalities 

foe = 21.7-e (6t - 5), g,, = 3.26.7-3r’iz (-4t + 5)) 50, = 7-l (122 - 5) 

Substituting (3.1) into (1.1) we obtain for the representative fij and &?ij a sequence of 

systems of linear differential equations 

Mi (fijv gij) SZ %fij’ + hfij + Wgij’ + magij = Pij, (3.2) 

Ni (fijv gij) s RJij + n,fij + nzgij’ + n,gij = Yij 

m, : -8T-'t (Gs - 5), ml = V,T-’ [7hi (6t - 5) - 156% + 1301 

nz3 = -2T-’ (12~ - 5) Y/z, nz4 = T-%-V (42hit - 24~ + 5) 

n1 = - 2T-’ (12~ - 5), n, = 42T-’ (- V, + hi) 

n3 = - 49 / 2T-W, n4 = 49 / 4T-‘t-‘/z (- “/, + hi), T = 30t + 5 

The right-hand sides pij and vii d epend on preceding approximations 
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v 20 = z -’ W7fO@LJ + v/7 - 4 fdh, - fzl + 

(‘/T + ‘11) :dfm + r(“/, + k&o+ E,J Df,, - 
~w’LT-’ 16/,f,,& + V&f,, + +g,,l},... 

where the operator D is determined as 

Dfij = 49 / 2T-’ [A-‘/p, (- ‘/, + hi)fij $ Tfij’I 

Dgij = 49 I 2Z’-’ [m-‘/z (- ‘/, + hi) gij + Tgij’I 

DEij = 49 / 2T-’ [L-‘/2 (“/, + hi) Eij + Tkij’I 

Besides (3.2) we consider the homogeneous system 

Mi (Fi (r), Gi (x)) = 0, Ni (Fi (z), Gi (T)) = 0 

We assume the distorting functions tij to be of the form 

cij = aij + bij (T - I)‘18 

(3.3) 

where the constants Uij and bij are selected so as to avoid an increase of singularities of 

representative velocities. 
We define functions fij and gij as follows: 

fij = CijFi + fij”, gij == CijGi + gijp (3.4) 

where Cij is an arbitrary constant and the index p denotes the particular solution of the 

inhomogeneous system (3.2). 
Boundary conditions for the unknown functions at the ends 7 = 0 and r= 1 are independ- 

ent on the condition of symmetry (1.3) which is transformed into the stipulation that as 

T-t0 
Fi :: R (T), Gi = ?/JR (T) (3.5) 

fijP m- R (z), gijp -= T”’ R (T) (3.6) 

We rewrite the condition (1.2) at the limit characteristic by analogy with (2.5) in the 

form 

fij = R (6), gij = R (6), 6 z (T - l)‘;~, T + 1 (3.7) 

System (3.2) and conditions (3.5)-(3.7) constitute Problem 3 for the representative fzj and 

gij. 

4. Let us first, consider functions l"i and Gi. We transform system (3.3) into a hyper- 

geometric equation by introducing the substitution 

Fi my niQi (T) + Il&i'(T)> Ci Y 113 Qi (7) + %Oi’ CT) (4.1) 

T,~ = - 49 / 4T-’ (--?/, + jr,), q2 = 49 / 2T-‘7 

q3 z 42T-’ (-‘/; + hi) T’ I, q4 := -2T-’ (12x - 5)+? 

and for function Qi obtain the equation /9/ 

r (1 - ,dQi” + hi - -c (a, -t fii + I)1 QI’ - aipiQi = o (4.2) 

U; = 7/10 (j/, + hi + IVi), pi := 7/10 (“/; + hi - lfJi) 

yi =m 1, bt’i = [1 + 2/1/7 (- ?/, -t hi) + 6 (-21, + /~~)2]‘/’ 

In conformity with condition (3.5) we assume the solution of this equation to be of the 

form 
0, = I’ (ai> Pi> yi; T) (4.3) 

where I' is the symbol of the hypergeometric function. The second fundamental solution of Eq. 

(4.2) is unsuitable, since its expansion in the neighborhood of z = 0 contains logarithmic 

terms. 
Let us now consider functions fij” and gip. If j=i__1 , the particular solution 

satisfying (3.6) is of the simple form 

fez-, = Ei,,-,Df,,> g:,<-, = Ei,i-1 Dg,, (4.4) 

When i+ i - 1 the presentation of partial solution is difficult. The analysis of the 

right-hand sides of pij and y,j of system (3.2) shows that when preceding approximations 
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appearing in them satisfy (3.5) and (3.6), functions pij and V~J are analytic in the neighbor- 

hood of .X = 0 
pij zz R (r), v;j = R (T) 

Hence the particular solutions fijP and gip which satisfy (3.6) exist. They can be 

obtained, for instance, in the form of expansions in the neighborhood of t = 0, with the 

expansion coefficients determined by the substitution into (3.2). The boundary conditions 

(3.5) and (3.6) can, thus, be satisfied. Note that no constraints whatsoever are imposed on 

the quantities 

hi, aijv btjt Cij (4.5) 

5. Let us now pass to the boundary condition (3.7) for whose fulfillment we shall choose 

constants (4.5) in a specific manner. 
To determine indices hi- we consider the analytic continuation of (4.3) to the neighbor- 

hood of point z = 1 

Qi = AiF(ai, fiit A-S,; 1 -r) + BiQi*, Qi” = (1 - T.)“‘~ F (vi - ai, yi - j3iy si + 2; 1 - r) (5.1) 

Ai z r (vi) r (Si + l)Ar (vi - CZ~) r (vi - pi)] 9 h = r h) r (- si - I) / [r cat) r (pi)1 
where I? denotes the gamma function and si is defined by 

Si = yi - G5j - pi - 1 = - ‘/5hi _ 1 (5.2) 

Using (4.1) and (5.1) we find that as t-+1 

Fi, Gi = R (T - 1) + (T - l)*iR (x - 1) (5.3) 

Let us consider functions Fr and Gr setting s1 = 11~. From (5.2) we have h, = _ 201 21. 
Note that R(T - I)= R(P), 6 = (t - f)‘ja. Then from (5.3) follows that 

F,, G, = R (83) + 6 R(P) 

from,which F,, G, = R (6). We take the particular solution fw”, g,,” is taken in the form 

(4.4). Obviously flop, glop = R (6). Consequently functions flo and gLo which satisfy Problem 

3 are determined by (3.4) in which constant c,,, is arbitrary. 

Restricting the analysis to series (3.1) in which indices hi represent a decreasingarith- 

metical progression, we set 

ILL = - 2Oi/21, i = 1, 2, . . . (5.4) 

Let us consider higher approximations of fro and 

Qi. 
g,,, and begin by analyzing functions 

From (5.2) and (5.4) we have 

si = 4i/3-I, i = 1,2, . . . (5.5) 

The analysis of quantities si in (5.5) and pi in (4.2) shows that the analytic continu- 

ation of function (4.3) into the neighborhood of t = 1 may lead to the following three cases. 
a) Conven'$.onal case in which exponent si is not a positive integer and parameter pi not 

a negative integer (if; 3,6,9,...). 
b) Degenerate case in which si is a positive integer, and pi is a negative integer, for 

instance, when i = 15 si = 19 and fil = - 34. In this case the hypergeometric function is a 

polynomial whose analytic continuation yields /16/ 

Qi = (-l)“(si + 2)m (m!)-‘Qi*, m = ai - Vi, (a), = r (a + m) / r (a) (5.6) 

Taking into account the form (5.5) of exponents Si and equalities (4.1), (5.1). and (5.6) 

we conclude that in cases a) and b) 
Fiy Gi = R (6) 

c) Logarithmic case in which si is a positive integer, 

integer (i = 3, 6, 9, 12, 18 ,...) . 
and parameter fir is not a negative 

In this case the analytic continuation of function (4.3) is of 
the form /16/ 

(Pm = 9 Cm + 1) + ‘II, h + st + 2) - 11) (ai + m + 1 + si)- lli (Pi + m + 1 + sJ, 11 (a) = r' (a) / r (a) 
and, consequently, as r+ 1 

F~=R(63)+R~F~*lnIr-l~,G~=R(6S)+8iG~*ln I~--ll (5.7) 

Fi* = qlQi* + JI~Q~*‘. Gi* = qsQi* + qrQt*; Szf = r (14 (-wrr (ai)r(pi) (si + I)!1 
6. Let us consider the representative frj and gaj (~8 = b/~ in the conventional case). 

Taking into consideration the data in Sects. 4 and 5 we conclude that functions fll and gm 
which satisfy Problem 3 are of the form (4.3) in which F,, G and fzl”, g,? are determined 
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by (4.1) and (4.41, respectively. 
Let us consider functions fzo and g,. Since the derivation of the particular solution 

f ,o' and p g,o is difficult, we shall investigate the behavior of functions in the neighbor- 

hood of r = 1 using the expansion in series with z--t 1. We transform system (3.2) by 
eliminating gij' from the first equation 

(Z - 1) &/ii f l&ij + l,gij = hij, Ni (fir, gij) = Vii (6.1) 
1, = - 40/49, 1, = - v, I- v, + h, + (12ck - 30) T-*1 

1, = (-‘/, + hj) TV’/*, hij = -4/49 (12T - 5)Vij + pij 

The right-hand sides h,o and vzo of syatem (6.1) depend on foo,fio, . . . and their first 

derivatives. Consequently when %+I we have the expansion 

h20= i (r_qm’3h(2;;:3), Qo= 5 (7-l)m'3vg'3) 
WI==--2 m=-2 

The analysis of system (6.1) show that, if the expansion of functions izo and g,o in 
the neighborhood of T = 1 is to be free of terms of order (z - 2)-'/z and (z - I)-'/* , it is 
necessary to stipulate 

h,,-'la = a,,+, = 0 
(6.2) 

After some simple transformations in the right-hand side h,,, it is possible to separate 
the group of terms that generate the singularity increase 

h,, = (Df,, - &&ft,o) [ (16 /49@E200  - foo)%o 
- (VT + h,) T-l (“/?) EooE1o + flol + . . .  (6.3) 

The analysis of (6.3) shows that condition (6.2) is satisfied when the coefficients of the 

distorting function El0 are taken in the form 

%O = -3.72.320-’ (-“/, + !z,)~ (V, + h,)-‘A,&, , b,, = - 73.600-‘B,C,, 

7. We shall now prove that for any i and j there exist functions 
fij 

and gij which 

satisfy Problem 3. Let us assume that preceding approximations have been already obtained 

from the solution of Problem 3 and that the condition of nonincrease of singularities 

Aij = i (r _ 1)m/3 h{;"'"', (7.1) 
m=0 

Vij = ,_, (r _ I)"133 v~~:3' 

is satisfied. 
Let us consider the behavior of the general integral of system (6.1) in the neighborhood 

of z=1. Note that Z=* defines a regular singular point for system (6.1) and the numbers 

0 and Si are roots of the respective characteristic equation. Since Si is a fraction in 

the form of a positive integer divided by three, and the right-hand sides of system (6.1) ex- 

pand in series in powers of (z - 1p, and m is an integer, hence as ~-tl we have the ex- 

pansion 

ji j = $  (T - l)m’3 fly’“’ + Oi jFi* III ) T - II , gi, = & (z - l)m’3 gtTi3) + mijGi* In 1 G - 1 1 .,I0 (7.2) 

where oij is some coefficient, fijP),fij’“i’ are arbitrary constants, and the remaining coeffici- 

ents are determined by recurrent formulas in terms of these. For some particular values of 

(‘4 expansions (7.2) define the behavior of solution (3.4)- (3.6) in ~~:~~~~sar~j'~nt~~~st~~ 
. Formulas (7.2) show that for satisfying the boundary condition 

(3.7) it remains to specify 
Oij = 0 (7.3) 

If j = i - 1 and i # 3, 6, 9, 12, 18, . . ., condition (7.3) is automatically satisfied. In 
the remaining cases (7.3) is to be considered as the equation concerning constants Cim in re- 

presentative velocities. 
To determine coefficient Oij we expand functions lk (d and nh. (r), k = 1, 2, 3, 4 with 

r-+1 
l,= i Ip'(Z-l)m, nh=,~,0"$)(7-l)m (7.4) 

m=0 

The substitution of (7.11, (7.2), and (7.4) into (6.1) yields 

aij = 5/*(-l)%+ ($ + $1 {n,(Qi [hij(s') - Z,] - Z,(O) @i-l) - Z,]} 

where 8 denotes the integral part of number si. 

8. Let us show on specific examples in what manner can Eq. (7.3) be satisfied. 

Let us consider the representative fzo and g,,, and write condition (7.3) as follows: 
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np s2 [A$~) - Z,] - zp [v&l) - &] = 0 (8.1) 
The right-hand side h?, of system (6.1) includes functions fpl and g,, which contain the 

arbitrary constant C*,. Hence the coefficient &o’“zJ can be represented as 

bl,(s') = 'I, (s* + I)(-++'B,C,, + . . . 
where the dots indicate terms free of C*,. The analysis of expressions Z, and Z, and of 

coefficient ~~(~'1) shows that constant c,, does not appear in them, which means that (8.1) is 

a linear equation with respect to c,,. 
Let us consider representative fsj and g,i (sQ= 3 represents the logarithmic case). Tak- 

ing into account (5.7) we represent coefficient %j in the form 

Oaj= C,jQs + . . 

where the dots indicate terms free of c3j. Equation (3.7) obviously represents a linear 

equation for csj * Continuation of the described process of constructing solutions fij and 

gii shows that a part of constants Cij must assume in conformity with condition (7.3) fixed 

values. Only constants Cio. i#3, 6, 9, 12, 18, . . . . remain arbitrary. 
Let us show that the constructed solution (3.1) satisfies condition (1.2), noting that 

functions 

u = u (6, P), u = u (8, p), 2 = P"~(500 + P% + f .). y = p (1 + ijS)'/' (8.2) 

are analytic by construction for small I? and finite p. Let us examine the Jacobian of trans- 

formation J(S,p) = a(~,y)/a(&p) at the limit characteristic 6 = 0 

J to, p) = a~co, p) / a6 = $17 [b,, phi + 0 (phzln p)l 
Since J # 0, the inverse functions of 6,plz,y are analytic in the limit characteristic 

neighborhood. Substituting these into (8.2) we obtain the velocity field with property (1.2). 

Note that expansions (3.1) may be supplmented by terms with index hi- . The obtained 

solution is more general, since it contains (3.1) and (1.5) as particular cases. 
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